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One of the biggest challenges with high-performance computing is that as machine architectures

become more advanced to obtain increased peak performance, only a small fraction of this

performance is achieved on many real application sets. This is because a typical application may

have various subtasks with different architectural requirements. When such an application is

executed on a given machine, the machine spends most of its time executing subtasks for which

they are unsuited. With the recent advances in high-speed digital communications, it has become

possible to use collections of different high-performance machines in concert to solve

computationally intensive application tasks. This article describes the issues involved with using

such a heterogeneous computing (HC) suite of machines to solve application tasks.

A hypothetical example application that has various subtasks, which are best suited, for different

machine architectures is shown in Figure 1 (based on (FrS93)). The example application executes

for 100 time units on a baseline serial machine. The application consists of four subtasks: the first

is best suited to execute on an SIMD (synchronous) parallel machine, the second is best suited

for a distributed-memory MIMD (asynchronous) parallel machine, the third is best suited for a

shared-memory MIMD machine, and the fourth is best suited to execute on a vector (pipelined)

machine.

Executing the whole application on an SIMD machine may improve the execution time of the

SIMD subtask from 25 to 0.01 time units, and the other subtasks to varying extents. The overall

execution time improvement may only be about a factor of five because other subtasks may not

be well suited for an SIMD machine. Using four different machines that match the computational

requirements for each of the individual subtasks can result in an overall execution time that is
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Figure 1. Hypothetical example of the advantage of using a heterogeneous
suite of machines, where the heterogeneous suite time includes inter-machine
communication overhead (based on (FrS93)). Not drawn to scale.

better than the baseline serial execution time by over a factor of 50. If the subtasks are dependent

on any shared data, then inter-machine data transfers need to be performed when multiple

machines are used. Hence, data transfer overhead has to be considered as part of the overall

execution time on the HC suite. For example, in Figure 1 the time for executing on the vector

machine must include any time needed to get data from the other machines.

There are many types of HC systems. This article focuses on mixed-machine HC systems

(SiA96), where a heterogeneous suite of independent machines is interconnected by high-speed

links to function as a metacomputer (KhP93). Mixed-mode HC refers to a single parallel

processing system, whose processors are capable of executing in either the synchronous SIMD or

asynchronous MIMD mode of parallelism, and can switch between modes at the instruction level

with negligible overhead (SiM96). PASM, TRAC, OPSILA, Triton, and EXECUBE are

examples of mixed-mode HC systems that have been prototyped (SiM96).
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One way to exploit a mixed-machine HC environment is to decompose an application task into

subtasks, where each subtask is computationally well suited to single machine architecture, but

different subtasks may have different computational needs. The subtasks may have data

dependencies among them. Once the subtasks are obtained, each subtask is assigned to a machine

(matching). Then the subtasks and inter-machine data transfers are ordered  (scheduling). It is

well known that finding a matching and scheduling (mapping) that will minimize the overall

completion time of the application is, in general, NP-complete (Fer89). Currently, programmers

must manually specify the task decomposition and the assignment of subtasks to machines. One

long-term pursuit in the field of heterogeneous computing is to automate this process.

In some cases, an application can be a collection of independent tasks, instead of the precedence

constrained set of subtasks considered in the previous discussion. For such cases, the matching

and scheduling problem considers the minimization of the completion time of the overall meta-

task consisting of all the tasks in the application.

This article includes information that is summarized from various projects that cover different

aspects of HC research. This is not an exhaustive survey of the literature. Each section of this

article illustrates the concepts involved by describing a few representative techniques or systems.

In the next section, some HC application case studies are described. The section on example HC

environments and tools discusses various software systems that are available to manage an HC

suite of machines. Different ways of categorizing HC systems is presented in the taxonomies

section. The conceptual model section provides a block diagram that illustrates what is involved
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in automatically mapping an application onto an HC system. Techniques for characterizing

applications and representing machine performance are briefly examined in the section on task

profiling and analytical benchmarking. Methods for using these characterizations in obtaining an

assignment of the subtasks to machines and ordering of the subtasks assigned to each machine is

explored in the section on matching and scheduling.

Example HC Application Studies

Simulation of Mixing in Turbulent Convection

An HC system at the Minnesota Supercomputer Center demonstrated the usefulness of HC

through an application involving the three-dimensional simulation of mixing and turbulent

convection (KlM93). The system developed for this HC application consists of a TMC SIMD

CM-200 and MIMD CM-5, a vector CRAY 2, and a Silicon Graphics Inc. VGX workstation, all

communicating over a high-speed HiPPI (high-performance parallel interface) network.

The necessary simulation calculations were divided into three phases: (1) calculation of velocity

and temperature fields, (2) calculation of particle traces, and (3) calculation of particle

distribution statistics, with refinement of the temperature field. The calculation of velocity and

temperature fields associated with phase 1 is governed by two second order partial differential

equations. To approximate the field components in these equations, three-dimensional cubic

splines (over a grid of size 128 × 128 × 64) were used. The result was a linear system of

equations representing the unknown spline coefficients. The system of equations for the spline
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coefficients was solved by applying a conjugate gradient method. These conjugate gradient

computations were performed on the CM-5. At each time interval, the grid of 128 × 128 × 64

spline coefficients was then sent to the CRAY 2, where phase 2 was performed.

The calculation of particle traces (phase 2) involved solving a set of ordinary differential

equations based on the velocity field solution from phase 1. This calculation was performed

using a vectorized Lagrangian approach on the CRAY 2. Once they were computed, the

coordinates of the particles and the spline coefficients of the temperature field were transferred

from the CRAY 2 to the  CM-200.

Phase 3 used the CM-200 to calculate statistics of the particle distribution and to assemble a

three-dimensional temperature field, based on the spline coefficients received from phase 2.  The

128 × 128 × 64 grid of splines was used to generate a file containing a 256 × 256 × 128 point

temperature field, representing a volume of eight million voxels (a voxel is a three-dimensional

element.) The voxels and the coordinates of the particles (one million particles were used) were

then sent to the SGI VGX workstation. The SGI VGX workstation visualized the results using an

interactive volume renderer. Although the simulation was a successful demonstration of the

benefits of HC, the authors of (KlM93) noted that much work was still required to improve the

environment for developing more HC applications.

Collision of Galaxies on the I-Way
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A metacomputer consisting of a TMC MIMD CM-5, Cray MIMD T3D, IBM MIMD SP-2, and

SGI Power Challenge was used to carry out a very large simulation of colliding galaxies

(NoB96). The objective of this grand challenge project was to harness the power of a collection

of parallel machines to address the following questions: (a) what is the origin of the large-scale

structure of the universe, and (b) how do galaxies form? The simulation was performed by

solving an n-body dynamics problem and a gas dynamics problem. The n-body problem was

solved using the self-consistent field (SCF) method. The gas dynamics problem was solved by

the piecewise parabolic method (PPM).

The SCF code was parallelized such that if the entire calculation contains N particles and the

computer has P processors, each processor evolves N/P particles. Each processor computes the

contribution of its particles to the global gravitational field. These partial results were summed

through a parallel reduction operation. After summing, the expansion coefficients were computed

and broadcast to the processors. The processors then use this information to reconstruct the

global gravitational field and evaluate the gravitational acceleration of the particles.

The computation for each time step in the SCF requires 36,280 FLOP/s per particle. The particles

were distributed such that the computation time per time step was approximately equivalent

across machines. For example, 40,960 particles per processor on the CM-5 and 57,600 particles

per processor on the T3D yielded a well-balanced load. A speed of 2.5 GFLOP/s was obtained

for the CM-5 and T3D suite with 6,307,840 particles, and the machines executing concurrently.

The results obtained through the distributed simulation were viewed using a distributed
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visualization system. The SGI Power Challenge was also used for solving the n-body problem

using the SCF code.

The PPM code was executed in parallel on an IBM SP2 machine in SPMD mode. The PPM

algorithm was computationally intensive and has a high computation to communication ratio.

This code obtains nearly 21.2 MFLOP/s per node on the IBM SP2.

Example HC Environments and Tools

This section overviews examples of software environments and tools that exist or are being

developed for HC systems. These examples are implemented at several different levels, from the

high-level management framework of SmartNet to the low-level Globus Toolkit. The

functionalities described here tend to evolve and change rapidly; the descriptions here are based

on the references given. Other tools include Fafner (FoF96), Legion (GrN97), Linda (CaG92),

Mentat (GrW94), Ninf (SeS96), and p4 (BuL94).

SmartNet

SmartNet is a mapping framework that can be employed for managing jobs and resources in a

heterogeneous computational environment (FrK96, FrG98). SmartNet enables users to execute

jobs on a network of different machines as if the network was a single machine. SmartNet

supports a resource management system (RMS) that accepts requests for mapping a job or a

sequence of jobs. The jobs are assigned to the machines in the suite by the mapping algorithms
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built into SmartNet. Traditionally, RMSs use opportunistic load balancing schemes, where a job

is assigned to the machine that becomes available first. However, SmartNet uses a multitude of

more sophisticated algorithms to assign jobs to machines. SmartNet’s goal is to optimize the

mapping criteria in an HC environment, but these criteria are flexible, allowing SmartNet to

adapt to many different situations and environments.

.

SmartNet exploits a variety of information resources to map and manage the applications within

its heterogeneous environment. It considers (1) how well the computational capabilities of each

machine match the computational needs of each application; (2) machine loading and

availability; and (3) time for any needed inter-machine data transfers. SmartNet also considers

the current state of other resources, such as the inter-machine communication network, before the

mapping algorithms assign jobs to machines to account for the shared usage of all resources.

SmartNet can use a variety of optimization criteria to perform its mapping. Two currently

implemented optimization criteria are: (1) maximizing throughput by minimizing the expected

completion time of the last job, and (2) minimizing the average expected run time for each job.

The mapping engine built into SmartNet uses a set of different heuristics to search the space of

possible maps to find the best one, as defined by the optimization criteria. Several heuristics have

been implemented. They include algorithms based on greedy strategies with varying execution

time complexities, and algorithms based on evolutionary programming strategies. The mapper is

modular, and is designed to implement any algorithm that satisfies relatively simple interfacing

requirements. The SmartNet mapping engine considers the heterogeneity present in both the

network of machines and the user tasks.
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One of the advantages of SmartNet is that it does not constrain the user to a particular

programming language or require special wrapper code for legacy programs. SmartNet only

requires the user to provide a description of the time complexity of each program. SmartNet

demonstrates that the performance of a metacomputer can be enhanced by considering both the

machine loading and heterogeneity in coordinating the execution of user programs. Thus,

SmartNet provides a global, general-purpose, scalable, and tunable resource management

framework for HC systems. SmartNet was designed and developed at NRaD (a Naval

laboratory), and is operational at several research laboratories.

Ideas and lessons learned from SmartNet are used in designing and implementing the

DARPA/ITO Quorum Program project called MSHN (Management System for Heterogeneous

Networks). MSHN is a collaborative research effort among NPS (Naval Postgraduate School),

NRaD (a Naval Laboratory), Purdue University, and USC (University of Southern California).

The technical objective of the MSHN project is to design, prototype, and refine a distributed

resource management system that leverages the heterogeneity of resources and tasks to deliver

the requested qualities of service.

NetSolve

NetSolve is a client-server-based application designed to provide network access to remote

computational resources for solving computationally intense scientific problems (CaD97). The
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machines participating in a NetSolve system can be on a local or geographically distributed HC

network.

For a given problem, a NetSolve client (i.e., and application task) sends a request to a NetSolve

agent (residing in the same or different machine).  The NetSolve agent then selects a resource for

the problem based on the size and nature of the problem.  There can be several instantiations of

NetSolve agents and clients. Every machine in a NetSolve system runs a NetSolve computational

server for access to the machine’s scientific packages. The NetSolve system can be accessed from

a variety of interfaces, including MATLAB, shell scripts, C, and FORTRAN. NetSolve can also

be called in a blocking or nonblocking fashion, so that computations can be performed

concurrently on the client system, thus improving performance.

NetSolve uses load balancing to improve system performance. For every machine in the

NetSolve system, the execution time for a given problem is estimated. This estimate is used to

determine the hypothetical best machine on which to execute the problem. This execution time

estimate is based on several factors, including size of the data, size of the problem, complexity of

the algorithm, network parameters, and machine characteristics.

To maintain accurate system performance information, each instance of an agent maintains a

value of the workload from every other server. A new workload value is conditionally broadcast

at regular intervals, i.e., if the value is outside a defined range, then the server broadcasts the

value. This allows accurate system information to be maintained, without needlessly burdening

the network with the same workload value.
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NetSolve has capabilities for handling fault tolerance at several different levels.  Servers

generally handle failure detection. Clients minimize side effects from service failures by

maintaining lists of computational servers. Future work includes increasing the number of

interfaces, improved load balancing, and allowing user-defined functions.

PVM and HeNCE

Parallel Virtual Machine (PVM) is a software environment that enables an HC system to be

utilized as a single, connected, flexible, and concurrent computational resource (BeD93, Sun90).

The PVM software package consists of system-level daemons, called pvmds, which reside on

each machine in the HC system, and a library of PVM interface routines.

The pvmds are responsible for providing services to both local processes and remote processes

executing on other machines in the HC system. By considering the entire set of pvmds

collectively, a virtual machine is formed. This virtual machine allows the HC system to be

viewed as a single metacomputer. The pvmds provide three major services: process and virtual

machine management, communication, and synchronization. Process and virtual machine

management issues include: computational unit scheduling and placement, configuration and

inclusion of remote computers into the virtual machine, and naming and addressing of resources.

Communication is performed with asynchronous message passing, allowing a sending process to

continue execution without having to wait for a receive acknowledgment. The synchronization

among processes provided by the pvmds can be accomplished with barriers or other techniques.
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Multiple processes can be synchronized, including synchronization of processes that are

executing on a local machine and processes that are executing remotely.

The PVM system also provides a library of interface routines. Applications access platforms in

the HC system via library calls embedded within imperative procedural languages such as C or

FORTRAN. The library routines and the pvmds (resident on each machine) interact to provide

communication, synchronization, and process management services. A single pvmd may provide

the requested service, or the service can be provided by a group of pvmds in the HC system

working in concert.

The heterogeneous network computing environment (HeNCE) is a tool that aids users of PVM in

decomposing their application into subtasks and deciding how to distribute these subtasks to the

machines currently available in the HC system (BeD93). HeNCE allows the programmer to

explicitly specify the parallelism for an application by creating a directed graph, where nodes

represent subtasks (written in either FORTRAN or C) and arcs represent precedence constraints

and flow dependencies. HeNCE also has four types of control constructs: conditional, looping,

fan out, and pipelining.

The cost of executing each subtask on each machine in the HC system is represented by a user

specified cost matrix. The meaning of the parameters within the cost matrix is defined by the user

(e.g., estimated execution times or utilization costs in terms of dollars). At execution time,

HeNCE uses the cost matrix to estimate the most cost effective machine on which to execute

each subtask.
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Once the directed graph and cost matrix are specified, HeNCE uses PVM constructs to configure

a subset of the machines defined in the cost matrix as a virtual machine. Then HeNCE initiates

execution of the program. Each subtask in the graph is realized by a distinct process on some

machine in the HC system. The subtasks communicate by sending parameter values necessary for

execution of a given subtask. These parameter values are specified by the user for each subtask.

Parameter values needed to begin execution of a subtask are obtained from predecessor subtasks.

If the set of immediate predecessor subtasks does not have all of the required parameters for a

subtask to begin execution, earlier predecessor subtasks are checked until all of the required

parameters are located. Once all of the parameters are found, the subtask is executed, and the

appropriate parameters are passed onto descendant subtasks. HeNCE can trace the execution of

the application for the display in real time or replay later.

Globus Metacomputing Infrastructure Toolkit

The Globus project (FoK97, FoK98) defines a set of low-level mechanisms that provide basic

HC infrastructure requirements, such as communication, resource allocation, and data access.

These low-level mechanisms are part of the Globus metacomputing infrastructure toolkit, and can

be used to implement higher level HC services (e.g., mappers and parallel programming tools).

Each component in the toolkit defines an interface and an implementation for any HC

environment. The interfaces allow higher level services to invoke that component’s mechanisms.
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The implementation uses low-level instructions to realize these mechanisms on the different

systems occurring within HC environments. Presently, the Globus toolkit consists of six

components. (1) The communication component provides a wide range of communication

methods, including message passing, remote procedure call, distributed shared memory, and

multicast. (2) The resource location and allocation module provides mechanisms for expressing

application resource requirements, identifying resources suitable for these requirements, and

scheduling these resources after they have been located. (3) In the unified resource information

service component, a mechanism is provided for posting and receiving real-time information

about the HC environment. (4) The data access module is responsible for providing high-speed

access to remote data and files. (5) Once a resource has been allocated, the process creation

component is used to initiate computation. This includes initialization of executables, starting an

executable, passing arguments, integrating the new process into the rest of the computation, and

process termination. Finally, (6) The authentication interface module provides basic

authentication mechanisms for validating the identity of both users and resources.

The modules of the Globus toolkit can be considered to define an abstract HC system. The

definition of this HC system simplifies development of higher level applications by allowing HC

programmers to think of geographically distributed, heterogeneous collections of resources as

unified entities.  It also allows for a range of alternative infrastructures, services, and applications

to be developed.  The stated long-term goal of the Globus project is to address the problems of

configuration and performance optimization in HC environments.  To accomplish this goal, the

Globus project is designing and constructing a set of higher level services layered on the Globus
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toolkit. These higher level services would form an adaptive wide area resource environment

(AWARE).

Taxonomies of Heterogeneous Computing

One of the first classifications of HC systems, provided in (WaS93), divides systems into either

mixed-machine HC systems or mixed-mode HC systems. These two categories were defined

earlier in this article. Mixed-machine HC systems denote spatial heterogeneity, whereas mixed-

mode HC systems denote temporal heterogeneity. Recently, researchers have further refined this

classification to obtain different schemes.

In (EkT96), a taxonomy called the EM3 (EMMM = execution mode, machine model) is presented

for HC systems. In this scheme, HC systems are categorized in two orthogonal directions. One

direction is the execution mode of the machine, which is defined by the type of parallelism

supported by the machine. For example, high performance computing architectures are often

specialized to support either MIMD, SIMD, or vector execution modes. The heterogeneity based

on this criterion can be temporal or spatial. The second categorization is the machine model,

which is defined as the machine architecture and machine performance. For example, Sun Sparc

CY7C601 and Intel i860 are considered different architectures. In addition, two CPUs of the

same type but driven by different speed clocks provide different machine performance and hence

are considered different machine models. The heterogeneity based on this criterion is always

spatial in nature.
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HC systems are classified by counting the number of execution modes (EM) and the number of

machine models (MM). The four categories proposed in (EkT96) are (a) SESM (single execution

mode, single machine model), (b) SEMM (single execution mode, multiple machine model), (c)

MESM (multiple execution mode, single machine model), and (d) MEMM (multiple execution

mode, multiple machine model). Fully homogeneous systems make up the SESM class. HC

systems composed of different architectures (or clock speeds) with the same execution mode are

in the SEMM class. Both the SEMM and MEMM classes are mixed-machine systems, but only

the MEMM class can include different execution models and mixed-mode machines. The MESM

corresponds to mixed-mode systems, i.e., temporal heterogeneity. HC systems composed of

different architectures, where some of the machines use different execution models fall into the

MEMM class.

In the classification provided in (Esh96), HC systems are grouped into: (a) system heterogeneous

computing (SHC) and (b) network heterogeneous computing (NHC). SHC is further divided into

multimode SHC and mixed-mode SHC. Multimode SHC systems can perform computations in

both SIMD and MIMD modes simultaneously, and exhibit spatial heterogeneity in a single

machine. Mixed-mode SHC systems switch execution between the SIMD and MIMD modes of

parallelism, exhibit temporal in a single machine. The NHC systems are divided into

multimachine NHC and mixed-machine NHC. Multimachine NHC denotes homogeneous

distributed computing systems and mixed-machine NHC indicates heterogeneous distributed

computing systems.

A Conceptual Model of Heterogeneous Computing
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In the examples featured in the application studies section, the programmer specified the machine

assignment for each program segment and initial data item. One of the long-term goals of HC

research is to develop software environments that will automatically find a near-optimal mapping

for an HC program expressed in a machine-independent high-level language. Performing the

mapping automatically has the following benefits: (1) an increase in portability because the

programmer need not be concerned with the composition of the HC suite, (2) easier use of the

HC system, and (3) the possibility of deriving better mappings than the user can with ad hoc

methods. While no such environment exists today, many researchers are working towards

developing an environment to automatically and efficiently perform the mapping of subtasks to

machines in an HC suite. A conceptual model for such an environment using a dedicated HC

suite of machines is described in Figure 2 (based on (SiD97) and (MaB98)).

For stage 1, information about the type of each application task and each machine in the HC suite

is used to generate a set of parameters relevant to both the computational characteristics of the

applications and the machine architecture features of the HC system. From this set of parameters,

categories for computational requirements and categories for machine capabilities are derived.

Stage 2 consists of two components, task profiling and analytical benchmarking. Task profiling

decomposes the application task into subtasks, where each subtask is computationally

homogeneous. Usually, different subtasks will have different computational needs. The

computational requirements of each subtask are quantified by profiling the code and data.

Analytical benchmarking quantifies how effectively each of the machines available in the suite
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Figure 2. Model for integrating the software support needed for automating
the use of heterogeneous computing systems (based on (SiD97) and (MaB98)).

performs on each of the types of computations required. The components of stage 2 are discussed

further in the next section.

Stage 3 requires the information available from stage 2 to derive the estimated execution time of

each subtask on each machine in the HC suite, along with the associated inter-machine

communication overheads. These statically derived results are then incorporated with initial

values for machine loading, inter-machine network loading, and status parameters (e.g.,

machine/network faults) to perform the matching and scheduling of subtasks to machines. The

result is an assignment of subtasks to machines and an execution an execution schedule based on
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certain cost metrics (e.g., minimizing the overall execution time for all tasks.) Matching and

scheduling in HC systems is examined in more detail later in this article.

Stage 4 is the execution of the given application. If a dynamic matching and scheduling system is

employed, the subtask completion times and loading/status of the machines/network are

monitored. The monitoring process is necessary because the actual computation times and data

transfer times may be input-data dependent and deviate from the static estimates. This

information may be used to re-invoke the matching and scheduling of stage 3 to improve the

machine assignment and execution schedule. Automatic HC is a relatively new field. Preliminary

frameworks for task profiling, analytical benchmarking, and mapping have been proposed,

however, further research is needed to make this conceptual model a reality (SiA96, SiD97).

Task Profiling and Analytical Benchmarking

Task profiling specifies the types of computations that are present in the application program by

decomposing the source program into homogeneous code blocks based on computational

requirements (Fre89). The set of code types defined is based on the features of the machine

architectures available and the processing requirements of the applications being considered for

execution on the HC system (phase 1 of the conceptual mode described in the previous section).

This set of code types will be a function of both the application task code and the types and sizes
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of data sets it is to process. Task profiling is performed in stage 2 of the conceptual model

presented in the previous section.

Analytical benchmarking provides a measure of how well each of the available machines in the

heterogeneous suite performs on each of the given code types (Fre89). In combination, task

profiling and analytical benchmarking provide the necessary information for the matching and

scheduling step (discussed in the next section). The performance of a particular code type on a

specific kind of machine is a multi-variable function. The variables within this performance

function can include the following: the requirements of the application (e.g., data precision), the

size of the data set to be processed, the algorithm to be applied, programmer and compiler efforts

to optimize the program, and the operating system and architecture of the machine that will

execute the specific code type (GhY93).

Selection theory is a collection of mathematical formulations that have been proposed for

selecting the most appropriate machine for each code block. Many formulations (e.g., (ChE93,

KhP93, WaK92)) define analytical benchmarking as a method of measuring the optimal speedup

of a particular machine type executing the best-matched code type to a baseline system. The ratio

between the actual speedup and the optimal speedup defines how well a code block is matched

with each machine type. Generally, the actual speedup is less than the optimal speedup.

The parallel assessment window system (PAWS) and the distributed heterogeneous

supercomputing management system (DHSMS) are briefly examined here. They represent

example preliminary frameworks for implementing task profiling and analytical benchmarking.
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The PAWS prototype consists of four tools: the application characterization tool, the architecture

characterization tool, the performance assessment tool, and the interactive graphical display tool

(PeG91). First, the application characterization tool transforms a given program written in a

specific subset of Ada into an acyclic graphical language that illustrates the program’s data

dependencies. The tool groups sets of nodes and edges into functions and procedures; allowing

the execution behavior of a given program to be described at various levels. However, this tool

does not perform task decomposition based on computational requirements and machine

capabilities.

To benchmark machines, the architecture characterization tool divides the architecture of a

specific type of machine into four categories: computation, data movement and communication,

I/O, and control. Each category can be repeatedly partitioned into subsystems, until the lowest

level subsystems can be described by raw timing information. The performance assessment tool

uses the information from the architecture characterization tool to generate timing information

for operations on a given machine. Two sets of performance parameters for an application,

parallelism profiles and execution profiles, are generated by the performance assessment tool.

Parallelism profiles describe the applications’ theoretical upper bounds of performance (e.g., the

maximal number of operations that can be parallelized). Execution profiles represent the

estimated performance of the applications after they have been partitioned and mapped onto one

particular machine. Both parallelism and execution profiles are produced by traversing the

applications’ task-flow graph and then computing and recording each node’s performance and
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statistically based execution time estimates. The interactive graphical display tool is the user

interface for accessing all the other tools in PAWS.

The DHSMS classifies task profiling and analytical benchmarking results within a systematic

framework (GhY93). First, DHSMS generates a universal set of codes (USC) for task profiling.

The USC can be considered as a standardized set of benchmarking programs used in analytical

benchmarking. Similar to the hardware organizational information maintained by the

architectural characterization tool in PAWS, a USC is constructed using a hierarchical structure

based on the machines in the HC suite. At the highest level of this hierarchical structure, modes

of parallelism are selected to specify the machine architectures. At the second level, finer

architectural characteristics, such as the organization of the memory system, can be chosen. This

hierarchical structure is organized so that the architectural characteristics at any level are choices

for a given category (e.g., type of interconnection network used). DHSMS assigns a code type

(i.e., computational characteristic) to each path from the root of the hierarchical structure to a leaf

node. Every such path represents a specific set of architectural features, defined by the nodes

within the path.

The DHSMS approach is extended in (YaA93) to include the generation of a representative set of

templates (RST) that can characterize the execution behavior of the programs at various levels of

detail. Many HC methodologies include mathematical formulation for task profiling and

analytical benchmarking that is similar in concept to that used in DHSMS (e.g., (ChE93, Fre89,

NaY94, WaK92)).
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Matching and Scheduling

Overview

Matching and scheduling is an important component of the conceptual model of the automatic

HC presented earlier. Finding an optimal solution for the matching and scheduling problem is

NP-complete (Fer89). For example, consider matching and scheduling 30 subtasks onto five

machines. This means that there are 530 possible mappings. Assuming it takes only one

nanosecond to evaluate the quality of one mapping, an exhaustive comparison of all possible

mappings would require 530 nanoseconds > 4 × 1010 seconds > 1000 years! Therefore, it is

necessary to have heuristics to find the best mappings rather than evaluate all possible mapping

combinations. Mapping schemes can be either static, where the mapping decisions are made off-

line before the execution of the subtask (e.g., (EsW96, KaA97, ShW96, SiL93, SiY96, WaS97))

or dynamic, where the mapping decisions are made on-line during the execution of the subtasks

(e.g., (FrC96, HaL95, LeP95, MaS98)).

A Mathematical Formulation of Matching and Scheduling in HC

The optimal selection theory (OST) (Fre89) provides the first known mathematical formulation

for selecting an optimal heterogeneous configuration of machines for a given set of problems

under a fixed cost constraint in HC systems. In the OST, it is assumed that the application

consists of non-overlapping code segments that are totally ordered in time. The overall execution

time of the application equals the sum of the execution times of its code segments.
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A code segment is defined to be decomposable if it can be partitioned further into code blocks

that can be executed in multiple copies of the best-matched machine type. A sufficient number of

machines of the best-matched machine type are assumed to be available. For simplicity, linear

speedup is assumed for a decomposable code segment. Let the application have S ≥ 1 code

segments and M ≥ 1 different types of machines to execute the code segments. Let vj be the

number of machines of type j and the cost of using a machine of type j is cj. The estimated

execution time of code segment i on machine type j is given by ti,j, for all 1 ≤ i ≤ S, 1 ≤ j ≤ M.

The optimization problem involves minimizing the total execution time of the application, T,

defined below, subject to a given constraint on the total cost of the machines used, C. The cost

incurred by using type j machines is given by vjcj. Assume that code segment i is best suited on

machine type j. Because there are vj number of type j machines the execution time of code

segment i on this type of machine is t i,j /vj. Thus, the goal is to minimize the total execution time

of the application:

given the total cost constraint:

The augmented optimal selection theory (AOST) (WaK92) is an extension of the OST. The

AOST considers the performance of the code segments for all available machine type choices

(not just the best-matched machine type) and a fixed number of machines of each type. In
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practice, this extension is useful because the best-matched machine may not be available, and

only a limited number of machines of each type may be available. Another extension of the OST

is provided by the heterogeneous optimal selection theory (HOST) (ChE93). The HOST extends

AOST by allowing concurrent execution of mutually independent code segments on different

types of machine and incorporating the effects of different possible local mappings. Consider an

example code block for the multiplication of two matrices onto a distributed memory parallel

machine. Many implementations with varying execution characteristics can be derived for this

code block. The HOST assumes that the best mapping choice (minimum execution time) is

known for each code block.

The generalized optimal selection theory (GOST) further refines the OST to handle

communication delays (NaY94). In the GOST, the basic code element is called a process, which

is nondecomposable. The application is represented by a directed acyclic graph (DAG), where a

node denotes a process and an arc denotes a dependency between two processes. A node has a

number of weights attached to it, corresponding to the execution times of the process on each

machine type for each known mapping onto that machine. An edge has a number of weights, one

for each communication path between each possible pair of host machines. In (NaY94), a

matching and scheduling problem is formulated with the objective of assigning each node to a

machine type and finding a start time for each node so that the overall completion time of the

application can be minimized. Polynomial-time algorithms are provided in (NaY94) for certain

types of DAGs.

Static Matching and Scheduling Heuristics
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The heuristics summarized below are based on the following assumptions, unless noted

otherwise. Each application task is represented by a DAG, whose nodes are the subtasks that

need to be executed to perform the application and whose arcs are the data dependencies between

subtasks. Each edge is labeled by the global data item that is transferred between the subtasks

connected by the edge. The matching and scheduling algorithm controls the HC machine suite

(hardware platform). Subtask execution is non-preemptive. The estimated expected execution

time of each subtask on each machine is known. For each pair of machines in the HC suite, an

equation for estimating the time to send data between those machines as a function of data set

size is known.

Cluster-M Mapping Heuristic

The HC matching and scheduling process can be thought of as a mapping of a graph that

represents a set of subtasks (task graph) onto a graph that represents the set of machines in the

HC suite (system graph) (Esh96). In Cluster-M, the mapping is performed in two stages. In the

first stage, the task graph and system graph are clustered. The task graph clustering combines the

communication intensive subtasks into the same cluster. Similarly, the system graph clustering

combines the machines that are tightly coupled (i.e., small inter-machine communication times)

into the same cluster. The clustering of the task graph does not depend on the clustering of the

system graph and vice-versa. Therefore, a task or system graph needs to be clustered only once.

In the second phase, the clustered task graph is mapped onto a clustered system graph. The
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clustering reduces the complexity of the mapping problem and improves the quality of the

resulting mapping.

The Levelized Min-Time Heuristic

The levelized min time (LMT) heuristic is a static matching and scheduling algorithm for subtasks

in an HC system (IvO95). It is based on list-scheduling class of algorithms. The LMT algorithm

uses a two-phase approach. The first phase uses a technique called level sorting to order the

subtasks based on the precedence constraints. The level sorting can be defined as follows. The

level 0 contains subtasks with no incident arcs. All predecessors with arcs to a level k subtask are

in levels k−1 to 0. For each subtask in level k there exists at least one incident arc (data

dependency) such that the source subtask is in level k−1. The level sorting technique clusters

subtasks that are able to execute in parallel.

The second phase of the LMT algorithm uses a min time algorithm to assign the subtasks level

by level. The min time algorithm is a greedy method that attempts to assign each subtask to the

best machine. If the number of subtasks is more than the number of machines, then the smallest

subtasks are merged until the number subtasks is equal to the number of machines. Then the

subtasks are ordered in descending order by their average computation time. Each subtask is

assigned to the machine with the minimum completion time. Sorting the subtasks by the average

computation time increases the likelihood of larger subtasks getting faster machines.
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One optimization to the LMT algorithm discussed in (IvO95) involves the use of information on

the amount of communication between subtasks in different levels. This enables the scheduler to

map subtasks that share large amounts of data to the same machine.

Genetic Matching and Scheduling Heuristic

In genetic algorithms (GAs), some of the possible solutions are encoded as chromosomes,

the set of which is called as a population. This population is iteratively operated on by the

following steps until a stopping criterion is met. The first step is the selection step, where some

chromosomes are removed and others duplicated based on their fitness value (a measure of the

quality of the solution represented by a chromosome). This is followed by the crossover step,

where some chromosomes are paired and the corresponding components of the paired

chromosomes are exchanged. Then, the chromosomes are randomly mutated, with the constraint

that the resulting chromosomes still represent valid solutions for the physical problem.

To apply GAs to the subtask matching and scheduling problem in HC systems using the

approach presented in (WaS97), the chromosomes are encoded with two parts: the matching

string (mat) and the scheduling string (ss). If mat(i) = j, then subtask si is assigned to machine mj.

The scheduling string is a topological sort of the DAG representing the task (i.e., a valid total

ordering of the partially ordered DAG). If ss(k) = i, then subtask si is the k-th subtask in the total

ordering. Each chromosome is associated with a fitness value, which is the completion time of

the solution represented by this chromosome (i.e., the expected execution time of the application

task if the mapping specified by this chromosome were used).
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On small-scale tests with up to ten subtasks, three machines, and population size of 50, the GA

approach found a solution (mapping) that had the same expected completion time as the optimal

solution found by exhaustive search. On large-scale tests with up to 100 subtasks, 20 machines,

and a population size of 200, the GA approach produced solutions (mappings) that were on the

average 150% to almost 300% better than those produced by the (faster) non-evolutionary basic

levelized min-time (LMT) heuristic proposed in (IvO95).

Dynamic Matching and Scheduling Heuristics

The static mapping heuristics assume that accurate estimates are available for parameters such as

subtask completion times and data transfer times. However, in general, such estimates have a

degree of uncertainty in them because subtask computation times and data transfer times may be

dependent on input data. Therefore, dynamic mapping heuristics that can handle the uncertainty

may be needed. Researchers have proposed different dynamic heuristics for varying HC models

(e.g., (BuR98, FrC96, HaL95, LeP95)). Furthermore, in dynamic mapping heuristics machines

can come on-line and go off-line at run time.

Hybrid Remapper

The hybrid remapper heuristic described here is a dynamic algorithm for matching and

scheduling subtask DAGs onto HC systems (MaS98). An initial, statically obtained matching and
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scheduling is provided as input to the hybrid remapper. The hybrid remapper executes in two

phases. In the first phase of the hybrid remapper,  performed prior to application execution, the

subtasks are partitioned into L levels as in the LMT heuristic. Each subtask is assigned a rank by

examining the subtasks from level L−1 to level 0. The rank of each subtask in the (L−1)-th level

is set to its expected computation time on the machine to which it was assigned by the initial

matching. The rank of a subtask si in level k is determined by computing the length of the critical

path from si  to the subtask where the execution terminates.

The second phase of the hybrid remapper occurs during the application execution. The hybrid

remapper changes the matching and scheduling of the subtasks in level k while the subtasks in

level (k−1) or before are running. The subtasks in level k are examined in descending order of the

static rank and each subtask is assigned to a machine with the earliest completion time for that

particular subtask.  The hybrid remapper starts scheduling the level k subtasks when the first

level (k−1) subtask begins its execution, and must finish the level k remapping before any level k

subtask has the input data and machine available it needs to execute. When level k is being

scheduled, it is highly likely that actual execution time information can be used for many

subtasks from levels 0 to (k−2). There may be some subtasks from levels 0 to (k−2) that are still

running or waiting execution when subtasks from level k are being considered for remapping. For

such subtasks, expected execution times are used.

Simulation results indicate that the hybrid remapper can improve the performance of a statically

obtained initial matching and scheduling by as much as 15% for some cases. Initial mappings for

the simulation were generated using the baseline heuristic (WaS98). The timings also indicate
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that the remapping time needed per level of subtasks is on the order of hundreds of milliseconds

for up to 50 machines and 500 subtasks. In the worst case situation, to obtain complete overlap

between the execution of the subtasks and the operation of the hybrid remapper, the computation

time for the shortest running subtask must be greater than the per level scheduling time. Ongoing

research will examine ways to increase the performance gain obtained from the use of the hybrid

remapper.

Generational Scheduling

The generational scheduling (GS) heuristic is a dynamic mapping heuristic for subtasks in HC

systems (FrC96). It is a cyclic heuristic with four stages. First, the GS forms a partial scheduling

problem by pruning all the subtasks with unsatisfied precedence constraints from the initial DAG

that represents the application. That is, the initial partial scheduling problem consists of subtasks

that are either independent or have no incident edges in the DAG. The subtasks in the initial

partial scheduling problem are then mapped onto the machine using an auxiliary scheduler. The

auxiliary scheduler considers the subtasks for assignment in a first come first serve order. A

subtask is assigned to a machine that minimizes the completion time of that particular subtask.

When a subtask from the initial partial scheduling problem completes its execution, the GS

heuristic performs a remapping. During the remapping, the GS revises the partial scheduling

problem by adding and removing subtasks from it. The completion of the subtask that triggered

the remapping event may have satisfied the precedence constraints of some subtasks. These

subtasks are added to the initial partial scheduling problem. The subtasks that have already
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started execution are removed from the initial partial scheduling problem. Once the revised

partial scheduling problem is obtained, the subtasks in it are mapped on to the HC machine suite

using the auxiliary scheduler. This procedure is cyclically performed until the completion of all

subtasks.

Self-Adjusting Scheduling for Heterogeneous Systems

The self-adjusting scheduling for heterogeneous systems (SASH) heuristic is a dynamic

scheduling algorithm for mapping a set of independent tasks (meta-task) onto an HC suite of

machines (HaL95). One processor is dedicated to compute the schedule, and this scheduling is

overlapped with the execution of the tasks. At the end of each scheduling phase, the scheduling

processor loads the tasks in that phase onto the working processors’ local queues. The dedicated

processor then schedules the next subset of tasks while the previously scheduled tasks are being

executed by the working processors.

The duration of the scheduling phase is determined by a lower-bound estimate of the load on the

working processors. The first working processor to complete executing all of the tasks in its local

queue signals the scheduling processor, and the scheduling processor then assigns more tasks to

all processors based on the partial schedule just computed. The SASH heuristic computes the

schedules using a variation of the branch-and-bound algorithm. In this variation, a tree is used to

represent the space of possible schedules. A node in the tree represents a partial schedule

consisting of a set of tasks assigned to a corresponding set of processors. An edge from a node

represents an augmentation of the schedule by one more task-to-processor assignment.
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A scheduling phase consists of one or more SASH iterations. In an iteration, the node with the

lowest cost is expanded by augmenting the partial schedule with another task-to-processor

assignment. The node expansions terminate when all the tasks are scheduled or the time for

scheduling phase i expires.

Matching and Scheduling Meta-Tasks

As defined earlier in this article, a meta-task is a collection of independent tasks that need to

mapped onto an HC suite. Some tasks may have subtasks with data dependencies among them.

Most of the heuristics and environments considered in the previous sections of this article are

suitable for mapping tasks that can be decomposed into subtasks with data dependencies.

Exceptions include the environments SmartNet and  NetSolve (which can manage meta-tasks and

decomposed tasks), and the mapping heuristic SASH (which was for meta-tasks).

Typically, when independent tasks are involved, the tasks arrive at the HC suite in a random

fashion for service. Also, some machines in the suite may go off-line or new machines may come

on-line. Therefore, dynamic mapping heuristics are usually employed to assign the tasks to

machines. Furthermore, the tasks can have deadlines and priorities associated with them. Two

types of dynamic approaches are on-line and interval. On-line approach assigns each task to a

machine when it is submitted. Interval approach waits for a set of new tasks to arrive and then

map those tasks and remap any earlier tasks that have not yet started execution. Developing

heuristics for matching and scheduling meta-tasks in HC systems is an active research area.
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Summary and Future Directions

This article illustrates the concepts involved in heterogeneous distributed computing by sampling

various research and development activities in this area. It is by no means an exhaustive survey

of the HC literature. The practical importance of HC is revealed by the application studies

summarized in this article. The conceptual model provided in Figure 2 envisions an automatic

HC programming environment. Most components of the model require further research for

devising practical and theoretically sound methodologies (KhP93, SiA96, SiD97). A flavor of the

work performed in matching and scheduling is also provided in this article.

An important question that is particularly relevant to stages 1 and 2 of the conceptual model is:

“What information can be obtained automatically and what information should be provided by

the programmer?” Following areas should be further researched to realize the automatic HC

environment envisioned in Figure 2: (1) developing machine-independent programming

languages, (2) designing high-speed networking systems, (3) studying communication protocols

for reliable, low overhead data transmission with given quality of service requirements, (4)

devising debugging tools, (5) formulating algorithms for task migration, fault tolerance, and load

balancing, (6) designing user interfaces and user friendly programming environments, and (7)

developing algorithms for applications with heterogeneous computing requirements. Most of

these issues pertain to meta-tasks as well as an application that is decomposed into subtasks.
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Machine-independent programming languages (WeW94) that allow the user to augment the code

with compiler directives are necessary to program the HC system. Following aspects should be

considered in designing the language and directives: (a) the compilation of the program into

efficient code for the machines in the suite, (b) the decomposition of tasks into subtasks, (c) the

determination of computational requirements of each subtask, and (d) the use of machine

dependent subroutine libraries.

There is a need for debugging and performance tuning tools that can be used across an HC suite

of machines. This involves research in the areas of distributed programming environments and

visualization techniques.

Another area of research is dynamic task migration between different parallel machines at

execution time. Current research in this area involves determining how to move an executing task

between different machines (ArS94, ArS95) and how to use dynamic task migration for load

rebalancing or fault tolerance.

Ideally, information about the current loading and status of the machines in the HC suite and the

network should be incorporated into the mapping decisions. Methods must be developed for

measuring the current loading, determining the status (e.g., faulty or not faulty), and estimating

the subtask completion times. Also, the uncertainty present in the estimated parameter values

such as subtask completion times should be taken into consideration in determining the machine

assignment and execution schedule.
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In summary, while the use of currently available HC systems demonstrate their significant

benefits, most of them require the programmer to have an intimate knowledge of what is

involved in mapping the application task(s) onto the suite of machines. Hence, the widespread

use of HC system is hindered. Further research on the areas briefly explained in this article

should improve this situation and allow HC to realize its full potential.
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